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H I G H L I G H T S  

• An automatic health feature extraction method for LIBs without prior knowledge is proposed. 
• Convolutional autoencoder model is used to extract features automatically. 
• Self-attention mechanism is incorporated to obtain accurate SOH estimation results. 
• The performance is compared with the manual feature-based methods and other data-driven methods.  
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A B S T R A C T   

Accurate state of health (SOH) estimation is significantly important to ensure the safe and reliable operation of 
lithium-ion battery. Most existing data-driven estimation methods are based on feature engineering and rely 
heavily on expert experience and manual operation. However, manually extracting qualified health features 
requires rich prior knowledge, and these highly-designed features for one specific application may not generalize 
well to other situations. In this work, an automatic feature extraction method combining convolutional 
autoencoder and self-attention mechanism is proposed for battery SOH estimation. With preprocessed data fed 
into the convolutional autoencoder, efficient features characterizing battery health are automatically extracted 
without human intervention. A self-mechanism module is then further employed to map these high-dimensional 
abstract health features into battery SOH. Finally, experimental study of battery aging is implemented to 
demonstrate the proposed method, and comparisons of the proposed method with existing data-driven ap
proaches and the manual feature-based methods have also been presented. With the help of the convolutional 
autoencoder and self-attention module, the proposed method replaces the conventional manual feature engi
neering with automatic feature extraction, and reaches 0.0048 average test root-mean-squared error (RMSE) and 
0.46% mean-absolute-percentage error (MAPE) on our dataset and 3.69% on the NASA public dataset.   

1. Introduction 

Lithium-ion batteries (LIBs) are well known energy storage equip
ment with many virtues such as high energy-density and high power- 
density [1,2]. They play an important role in many applications such 
as transportation, aerospace industry and portable electronics [3,4]. 
Energy storage capacity degrades and the power delivery capability 
deteriorates by battery calendar time and charge/discharge cycles [5]. 
When battery health degrades to a certain extent, accidents such as 
battery leakage, insulation damage and partial short circuit problems 

may give rise to several safety hazards [6,7]. Therefore, efficient 
lithium-ion battery state of health (SOH) estimation is necessary to 
remind users the time to replace and maintenance [8,46]. 

There are many challenges for SOH estimation, for example, battery 
capacity can only be indirectly inferred from the measurable variables 
such as voltage and current. Besides, the degradation of LIB capacity is a 
complicated and nonlinear process, varying with different battery type 
and working conditions [9–11]. Many methods have been proposed for 
lithium-ion battery SOH estimation, which can be broadly categorized 
into model-based methods and data-driven methods [12,13]. 
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Model-based methods are methods aiming at estimating battery SOH by 
establishing physical and chemical degradation models and measuring 
related parameters. And these methods can be further categorized into 
electrical equivalent circuit model [14,15], electrochemical model [16, 
17] and empirical model [18–20]. Model-based methods are interpret
able, easy to understand, and can estimate battery degradation from the 
root causes of aging. However, there are still several unsolved problems 
among these methods. For instance, the establishment of the models 
relies on abounding prior knowledge about LIBs. Moreover, establishing 
models puts forward a variety of assumptions, which easily causes de
viation from the real-world applications. In addition, inaccurate 
parameter estimation further hinders the performance. 

In contrast, data-driven methods can provide accurate degradation 
approximation with minimal demands of lithium-ion battery physical 
and chemical mechanism knowledge. They estimate SOH by directly 
utilizing historical cycle data that can be easily collected through sensors 
[21]. There are generally four steps in a data-driven battery SOH esti
mation method: data collection, feature engineering, model training and 
SOH estimation. Zhu et al. [22] extracted six statistical features from 
voltage curve of relaxation process after fully charging. Then they used 
XGBoost, ElasticNet and support vector regression models to estimate 
battery capacity on three datasets containing 130 LiNiCoAl and 
LiNiCoMn commercial batteries. Their best estimation result achieved 
0.011 RMSE. Wang et al. [23] developed a modified Gaussian process 
regression model for battery SOH estimation. Three features were 
extracted from charging voltage, discharging voltage and discharging 
temperature. Their results reached 0.0241 RMSE on the NASA public 
dataset. Data-driven methods are easy for implementation and can 
perform efficiently on SOH estimation tasks. More importantly, they can 
achieve equivalent or even more precise results compared with 
model-based methods. 

However, there is still room for improvement among data-driven 
methods, not least in the case of the need for prior knowledge when 
extracting efficient health features that can best represent battery health 
state. Roman et al. [24] developed a machine learning (ML) capacity 
estimation pipeline which extracted 30 features from constant 
current-constant voltage (CC-CV) charging stage. Most relevant features 
were further selected through a modified cross validation method, and 
these features were finally fed into four ML algorithms to estimate 
battery capacity. Their approach was validated on multiple public 
datasets with varied charging protocols, and the best result of 0.0045 
RMSE were achieved. Huang et al. [25] proposed an SOH evaluation 
method based on the experimental data collected from NCA battery cell 
and LFP battery module using the framework of probability density 
function which can be applied under low sampling frequency. They 
introduced two new health indicators of regional voltage and regional 
frequency. The SOH has a strong linear relationship with the extracted 
regional frequency feature, the fitting R2 can reach more than 0.99. Ma 
et al. [26] extracted three features from differential thermal voltam
metry curve, and recursive neural network models were constructed to 
predict remaining useful life and estimate SOH. The approach was 
validated on NASA database and SOH estimation RMSE maintained less 
than 1%. Ma et al. [27] extracted six features from charging-discharging 
process for NASA dataset and MIT dataset, some of them were directly 
measured while others needed calculation. Then they used transfer 
learning and deep belief network-long short-term memory hybrid 
network to perform SOH estimation. Their best results were obtained on 
the MIT dataset with 0.99% MAPE. It is not doubtful that these existing 
data-driven methods are feasible in SOH estimation problems, but their 
drawbacks are also very obvious, that is, some of these manual feature 
engineering processes require prior knowledge of battery aging mech
anisms and extensive mathematical calculations. Besides, it is still 
necessary to find suitable data-driven models to process the health 
features extracted from battery cycle data. Therefore, how to use much 
less prior knowledge and work load to easily while effectively extract 
health features which can be handled by an appropriate SOH estimation 

model remains an open challenge. 
One applicable solution is to utilize the strong learning and nonlinear 

modeling ability of ML algorithms to automatically extract features from 
raw battery data. Not too many works focused on this aspect, and 
existing methods often integrate feature extraction and SOH estimation 
module into a supervised model which is fed with raw battery data as 
input and trained with SOH values as labels. For instance, Gong et al. 
[28] utilized an encoder-decoder model to estimate battery SOH. Con
volutional neural network and ultra-lightweight subspace attention 
mechanism was combined in the encoder for feature extraction, and 
there was no further manual feature extraction. Only raw battery cur
rent, voltage and temperature data were needed to estimate battery 
SOH. However, when extracting features using supervised learning al
gorithm, the model will learn to map the input raw data into the SOH 
labels. By the intervention of SOH labels, these features do not naturally 
represent the original interior proper of raw cycle data, but have a 
specific tendency which is artificially added to express SOH labels. An 
unsupervised learning algorithm can be a good solution to improve this 
problem with building an automatic feature extractor. No label is 
needed during unsupervised learning training. Therefore, features 
which can independently represent the raw cycle data can be obtained 
through this algorithm. 

Autoencoder (AE), one of the representative unsupervised learning 
algorithms, is a good choice for feature extraction. It has a merit of 
extracting lower-dimensional features by reconstructing input on the 
output layer. AEs have been already used as feature extractors in some 
other fields. For example, Liu et al. [29] used stacked autoencoder to 
extract features from frequency domain signals to diagnose gearbox 
faults. In the field of short-term water demand forecast for urban water 
supply, Chen et al. [30] proposed a framework using one dimensional 
convolution to extract features automatically based on historical data 
and improve the forecasting results. And when addressing the problem 
of accurate hydraulic piston pump fault diagnosis, Tang et al. [31] 
introduced normalized convolutional neural network framework for 
feature extraction. The motivation of these automatic feature extraction 
works can be summarized as to solve the research gap that manual 
features may not mine the data completely, and enhance the model 
adaptability towards raw data to improve model behavior. 

However, in battery health estimation works, AEs were hardly used 
as feature extractors. Xu et al. [32] utilized stacked denoising autoen
coder to predict battery life cycles. They manually engineered features 
from temperature, internal resistance and discharge capacity-voltage 
curves, SDAE model was used to predict battery life. Wei et al. [33] 
manually extracted six features from battery voltage, current and tem
perature data. SAE was utilized to address the problem of redundancy 
and deficiency of the features, then Gaussian mixture regression is used 
to predict battery life. AEs in these works were used on other purposes, 
their advantages on automatically extracting features haven’t been 
developed to the best extent. 

There are still some further problems when introducing AE to extract 
features automatically, for example, the features an AE extracts are 
abstract and relatively high-dimensional representations, bringing some 
trouble for the subsequent processing. Therefore, how to use these ab
stract health features to estimate battery SOH becomes a new challenge. 
Some easily-structured models may not have the ability to unearth the 
relationship between these abstract health features and battery SOH. 
Attention mechanism models have a strong ability to find out which part 
of the input is important to the task, they can augment effective infor
mation and suppress redundant one. Widespread applications in other 
fields such as natural language processing [34,35] and computer vision 
[36,37] also demonstrate the powerful ability of attention mechanisms. 
Self-attention (SA) suits for SOH estimation task among various types of 
attention mechanism in this paper. It calculates response at a position as 
a weighted sum of the features at all positions with only a small 
computational cost [36]. For instance, Vaswani et al. [38] have 
demonstrated that machine translation models could achieve excellent 
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results by solely using a self-attention model, proving the effectiveness 
of this technique. SA mechanism is suited to further learn the internal 
rules of the abstract health features extracted by AE by exploring the 
interaction among the elements and estimate battery SOH in our work. 

As existing data-driven approaches are mostly implemented under a 
framework with manual feature extraction step, which is time- 
consuming, labor-intensive and low-generalized, in this paper, we pro
pose an autoencoder based automatic feature extraction approach to 
replace the conventional manual feature engineering in lithium-ion 
battery state of health estimation tasks. Self-attention mechanism, a 
powerful ML model, is further used to process the abstract health fea
tures extracted by the autoencoder to estimate battery state of health. 
The main contributions of this work are summarized as follows:  

1) A novel data-driven SOH estimation approach of LIBs is proposed. 
This approach can extract features automatically from raw battery 
cycle data, thus saving time and labor from the troublesome process 

of manual feature engineering. The experimental results on our 
dataset show that the proposed method achieved average 0.0043 
RMSE and 0.38% MAPE, demonstrating a good performance of our 
proposed model on LIB SOH estimation task.  

2) Convolutional autoencoder (CAE) is introduced as the feature 
extractor. As an unsupervised learning algorithm, the CAE can 
automatically extract features directly from the raw cycle data 
without the intervention of labels. Our CAE model provides a 
convenient and efficient way to extract health features from raw 
battery data. 

3) With the employment of SA module, features can be properly pro
cessed and precise SOH estimation results can be obtained. Features 
extracted by CAE can be abstract and relatively high-dimensional, 
the SA module can guarantee the learning ability of estimation 
model and provide accurate estimation results. 

The rest of this paper is organized as follows: Section 2 will propose 

Fig. 1. The framework of our proposed method.  
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our overall framework and workflow and introduce the preliminaries of 
our methodology. Section 3 will discuss the experimental details, 
including the dataset introduction, implementation details, evaluation 
metrics, and experimental results. Finally, we give our conclusions in 
Section 5. 

2. Methodology 

In this section, we will introduce the overall framework and some 
basic knowledge of the proposed CAE-SA SOH estimation method. 

2.1. Overview 

The whole framework of the proposed method is shown in Fig. 1. In 
step 1, we first preprocess the voltage and current data. Then in step 2, 
we feed the preprocessed raw data into CAE and train it through unsu
pervised learning training, and we can get the abstract health features in 
the hidden layer of the CAE. In step 3, we feed the extracted features into 
the estimation model, and train it through supervised learning model 
using the true SOH values as labels to conduct the training process. 
Finally, in step 4, after the whole model is trained, we can perform SOH 
estimation on our CAE-SA model. The detailed description of the four 
steps in the proposed method’s framework are as follows: 

Step 1: data preprocessing. We utilize raw voltage data from CC 
charging stage and current data from CV charging stage, and provide 
a “cutting-laying down” preprocessing method. The preprocessed 
data are 2-channel sequences which describe the change of charging 
time on the charging period with the same voltage and current. 
Step 2: Automatic feature extraction. CAE is utilized in our method to 
automatically extract features from the preprocessed data. The 
model is trained to learn to reconstruct the input data on the output 
layer through unsupervised learning algorithm, so other values such 
as SOH are not required during training. The extracted features can 
be obtained on the hidden layer. Therefore, the feature extraction 
process needs only to feed the preprocessed raw data into the CAE 
model and battery health features can be extracted automatically. 
Note that once CAE training is done, we construct our model by 
removing the decoder, and freezing the parameters of the encoder, 
then attaching the estimation model after the encoder, that in the 
follow-up training the parameters in the encoder will not be 
upgraded. 
Step 3: model training. The follow-up ML model needs to use the 
features extracted by CAE, and we employ SA module in our model. 
SA module can learn the internal relationship among data elements, 
and can handle the abstract health features. Besides, a CNN model is 
combined with the SA module to be the SOH estimation model. This 
model is trained to learn to map the abstract health features into the 
SOH values through supervised learning algorithm, thus, SOH values 
are required as labels during training. 
Step 4: SOH estimation. We can get the well-trained battery SOH 
estimation CAE-SA model after the above steps. Once the raw battery 
data are acquired and preprocessed, we input them into the CAE to 
extract features. Then these features will be fed into the SA estima
tion model, which will output the estimated SOH. 

2.2. Data preprocessing 

A “cutting-laying down” data preprocessing method is used for data 
preprocessing. Specifically, “cutting” means the intercepting whose 
details have been discussed before, and “laying down” means the data 
alignment which needs an exchange of the independent and dependent 
variable on the charging curve. For the CCCV charging data under 
different SOH of LIBs, the cut-off voltage and cut-off current are the 
same in different cycles while the charging time varies. The purpose of 
this preprocessing method is to intercept the data (“cut”) and align them 

(“lay-down”). A sketch of this process is shown in Fig. 3. The voltage and 
current data have a clear trend that follows the variation of the cycles. 

Time-varying charging current and voltage data can be easily 
measured by sensors, and the patterns of which in different cycles can 
reflect different health state. However, it is unrealistic to utilize the 
entire charging data as model input due to the constantly changing 
voltage or current range and corresponding charging time. Therefore, to 
facilitate subsequent processing as well as reduce data volume, we 
attempt to intercept the voltage data of CC stage and current data of CV 
stage into a specific data segment with voltage or current range that is 
included in each different cycle and can best represent the battery SOH. 
The intercepted voltage or current data segment can be represented by 
the range of voltage: [Vl,Vh] at CC stage, and current: [Il, Ih] at CV stage, 
where Vl and Il mean the lower bounds of voltage or current segment, Vh 

and Ih mean the higher bounds. A sketch of the intercepting process of 
CCCV charging data from one cycle is shown in Fig. 2, this intercepting 
step is called “cutting”. After “cutting” step, in each cycle we will obtain 
one segment of voltage data from CC charging stage and another of 
current data from CV charging stage with the same voltage or current 
range. Note that the method can adopt voltage and current data seg
ments from any ranges as long as with the ranges exist in all different 
cycles. While the determination of the both bounds of voltage range 
[Vl,Vh] and current range [Il, Ih] is conducted by experiments in our case, 
which will be introduced in details in section 3.4.1. 

The intercepted voltage and current data are formatted as Fig. 3(a). 
Apparently, for different cycles their corresponding charging time is 
different, and this difference has a correlation with the cycle number. 
Thus, to reflect this difference, variable relationship should be reversed, 
the varying time should be dependent variable while the voltage or 
current data with the fixed range [Vl,Vh] and [Il, Ih] in different cycles 
should be independent variable. This exchange step of independent and 
dependent variables is called “laying down”. Fig. 3 shows this step 
performed on the data from different cycle. 

Please note that the time value we utilize is the relative charging time 
in a single cycle. For instance, when the charging starts in each cycle, the 
time will be re-marked as 0 to start timing, as shown in Fig. 2; and when 
CC charging stage ends and CV charging starts, the timing continues 
without resetting to 0. We have to mention that, in each cycle, the 
battery is assumed fully discharged before charging. If it isn’t fully 
discharged, the remaining capacity may cause uncertain charging 
voltage and current. This may affect the data preprocessing and conse
quently affect the performance. Possible solution to this problem is to 
change a way of selecting the voltage and current segment. 

As shown in Fig. 3(b), to get a set of neatly processed curves, cubic 
spline interpolation, a spline curve fitting method is utilized to align the 
intercepted data. It aims to establish several piecewise cubic polynomial 
relationships, which are called the interpolation function. This method 
fits a smooth cubic spline curve by calculating the fitting function on 
each interpolation subinterval, and finally getting a piecewise fitting 
function on the whole interval. After alignment, data from different 
cycle will become tidy as shown in Fig. 3(b). 

After the “cutting-laying down” preprocess, the voltage and current 
data are concatenated to be 2-channel sequences, in a shape of 

d =(cycle, channel, samples), (1)  

in which the first dimension stands for different cycles, the second 
dimension stands for the channel for voltage and current data, and the 
third dimension stands for the sampling points in one cycle while fitting 
the spline curves. The preprocessed data will be fed into the CAE for 
feature extraction. 

2.3. CAE-SA for lithium-ion battery SOH estimation 

An autoencoder is a neural network structure that is trained to 
reconstruct the input to output. The network structure of an autoencoder 
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can be divided into two parts, the encoder and decoder: 
{

h = f (d)
d̂ = g(h)

, (2)  

where d is the preprocessed data with the shape of Eq. (1) input, and f(∗)
means the encoder function, h is the latent features the encoder extracts; 
similarly, g(∗) means the decoder function and d̂ is the output, which is 
the reconstruction of input d. Training an autoencoder doesn’t require 
additional labels, which means that we train the whole autoencoder under the 
target of approximating the model output d̂ as close as possible to the target d. 
The latent feature h can be regarded as the low-dimensional feature 
vectors representing the input data. The structure of decoder is always 
symmetric to that of encoder in a vanilla autoencoder. 

A CAE is an autoencoder built with CNN. CNN, composed of multiple 
convolutional layers, is a kind of special neural network invented to 
process data that has a specific grid-like topology [39], the inputs and 
outputs of which are usually multidimensional tensors. To build up a 
CAE with CNN, we need to replace several fully connected layers in 
vanilla AE with convolutional layers. Fully connected layers in a vanilla 
AE can’t properly deal with multi-channel data such as our 2-channel 
data, whose expression is given in Eq. (1), it can only learn the 

non-linear patterns on the last dimension of the input data. But con
volutional layers are able to train multiple kernels on each channel of a 
multi-channel data, and learn the non-linear relationship among 
different channels. Finally, the convolutional layers will map the input 
data flexibly into another multi-channel data with different number of 
channels. These convolutional layers make the network component and 
structure more complex and endow the AE with stronger ability to 
extract latent feature representations from our input data not only on the 
last dimension representing the data points, but also different channels 
representing the voltage or current data. 

Then, as for the SA module, we follow the attention architecture 
proposed by Zhang et al. [36] and Vaswani et al. [38], adopts the 
“query-key-value” (Q-K-V) mode. First, the inputs will be mapped to 
three sets: queries, keys and values, queries and keys share the same 
dimension dk, while values have dimension of dv, and they are packed 
together into matrices Q, K, and V. We compute the dot products of Q 
and K, divide it by 

̅̅̅̅̅
dk

√
, and apply a softmax function to obtain the 

weights on the values, and then we multiply the weight matrix along 
with the V matrix to get the output [38]: 

Attention(Q,K,V)= softmax
(

QKT
̅̅̅̅̅
dk

√

)

V (3) 

Fig. 2. The “cutting” on the charging voltage and current data in the constant current-constant voltage charging (CCCV) protocol. Vh,Vl, Ih andIl represent the 
cutting points of voltage and current, respectively. 

Fig. 3. A sketch of “lay down” in different cycles. (a) the data segments intercepted directly from the raw voltage and current charging data. (b) the data segments 
after “lay down”. 
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We use 3 different 1D-convolutional layers to map the input, which is 
extracted features by autoencoder, into three representations: query, 
key and value. The kernel size of these 1D-convolutional layers is 1 for 
each. The attention score map contains the self-attention weights of each 
element to another in the input data, in other words, this attention score 
map will reflex the importance of each element to every other element, 
and enhance the learning ability of the estimation model to help it 
perform the final SOH estimation task. 

The data input into our SOH estimation machine learning model are 
2-channels: ① time VS. voltage in CC charging stage, and ② time VS. 
current in CV charging stage, both 1 dimensional. We use 1D CNN model 
for sequential data processing. CAE, the autoencoder consisted of CNN, 
is used for extracting features. Then the CAE model is trained to 
reconstruct the input data according to Eq. (2), and finally, we can 
obtain the features at the output of the hidden layer h. After the auto
matic feature extraction by our CAE model, we feed the features into SA 
module to get the weight of each element and obtain the output, which is 
called the self-attention features. Finally, we input the self-attention 
features into a CNN to get the lithium-ion battery SOH estimation 
value. The whole model is trained through back propagation, a classic 
algorithm to train neural network models for nonlinearity relationship 
fitting. 

3. Experimental 

To verify the effectiveness and performance of our proposed method, 
extensive experiments are conducted to comprehensively show quali
tative results and corresponding analyses are provided on our proposed 
model. 

3.1. Dataset description 

3.1.1. Our dataset 
The dataset used in this work contains the aging data of 6 commer

cial ICR18650 cylindrical cells, and they are labeled as Cell 1 to 6, with 
parameters listed in Table 1. This dataset is used for most of the detailed 
step descriptions. 

The cycle aging test was carried out based on six new LIBs at 25 ◦C. In 
each cycle, the charge contains a CC-CV charge process: a CC charge at 1 
C-rate (2 A) until the voltage reaches 4.2 V, followed by a CV charge 
until detection of current below 0.04 A. The discharge is then performed 
in CC mode at 3 C-rate (6 A) until the voltage reaches a cut-off voltage of 
2.75 V. A two-stage discharge approach is performed every 50 cycles to 
measure the battery remaining capacity. The first discharge is performed 
at 1 C-rate (2 A) until the voltage reaches 2.75 V, then after 10 min pause 
time the second discharge is performed at 0.5 C-rate (1 A) until the 
voltage reaches 2.75 V again. The discharge and charge capacity of LIBs 
can be obtained directly through the battery test system after two-stage 
discharge and CC-CV charge. 

We use the cell data before the end-of-life (EOL) which is defined as 
the 80% of the nominal capacity, and the capacities before EOL of all 
cells are illustrated in Fig. 4. The SOH of cells in this paper is defined as 

[40]: 

SOH =
Cpres

Cnom
, (4)  

where Cpres represent present capacity while Cnom represents nominal 
capacity. 

To utilize the full information the dataset contains, we make six 
datasets using these six batteries, where each battery was used as test set 
and the remaining five were used as a training set, and all our experi
ments were done on these six datasets. 

3.1.2. NASA dataset 
In our work, we further utilized another dataset, which is the famous 

NASA public dataset. In the NASA dataset, 4 Li-ion batteries which are 
numbered as 5, 6, 7 and 18 were run through charging and discharging 
cycles. Charging was carried out in a CC mode at 1.5A until the battery 
voltage reached 4.2V and then continued in a CV mode until the charge 
current dropped to 20 mA. Discharge was carried out at a CC level of 2A 
until the battery voltage fell to 2.7V, 2.5V, 2.2V and 2.5V for batteries 5 
6 7 and 18 respectively. The experiments were stopped when the bat
teries reached a 30% fade in rated capacity from 2Ah to 1.4Ah. This 
dataset will be used for the description for the comparisons with manual 
features in experimental sections 4.3. 

3.2. Implementation details 

3.2.1. Automatic feature extraction 
We use CAE to extract the abstract health features of the raw battery 

data, and the encoder structure of our CAE model is shown in Table 2 
and the decoder structure is symmetric to the encoder. We use a fully 
convolutional architecture for our CAE, which means there are only 
convolutional layers in it. The encoder consists of five convolutional 
layers and one linear layer. The convolutional layers have kernel shape 
(5, 5, 3, 5, 5), output channels (8, 32, 64, 64, 20), stride (1, 1, 3, 1, 5), 
and the linear layer output a 20-channel feature vector with length of 5. 
Similarly, decoder has one linear layer and five 1D transpose convolu
tional layers. Despite the simplicity of our CAE, it provides an efficient 
way of extracting features from the raw battery data without expert 
experience. 

3.2.2. SOH estimation 
We feed the automatically extracted features from the CAE model 

into the SA module, and the network outputs an SOH estimation value. 
The specific architecture of the network is shown in Table 3. 

The layers producing query, key and value are 1D convolutional 
layers with the channel numbers of (4, 4, 20), and their kernel sizes are 
all set to 1 to maintain the data length. After that, we obtain the self- 
attention features. Then these self-attention features are feed into the 
output network to produce a single value, finally, this value passes 
through an output function to produce the battery SOH estimation 
value. To obtain the value in the appropriate interval of battery SOH 
using the output function, we utilized sigmoid function, denoted in Eq. 
(5), which originally produces values in the interval [0,1], to customize a 
function which output values in the interval of [0.7,1.1], denoted by the 
output function in Eq. (6). 

sigmoid(x)=
1

1 + e− x (5)  

output(x)=
0.4

1 + e− x + 0.7 (6)  

3.3. Evaluation metrics 

Since lithium-ion battery SOH estimation is a regression task, we use 
two common metrics to evaluate the model performance: root-mean- 

Table 1 
Parameters of the 18,650 LIBs.  

Parameter Content 

Anode material Graphite 
Cathode material LiNi0.5Co0.2Mn0.3O2 

Maximum size Diameter: 18.6 mm 
Height: 65.3 mm 

Weight About 43 g 
Nominal capacity 2000 mAh 
Nominal voltage 3.6 V 
Discharge cut-off voltage 2.75 V 
Charging upper limit voltage 4.20 ± 0.05 V 
Charging cut-off current 0.02 C-rate  
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square error (RMSE), and mean-absolute-percentage error (MAPE). 
Their definitions are given in Eq. (7): 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(yi − ŷi)

2

n

√
√
√
√
√

MAPE =
1
n
∑n

i=1

|yi − ŷi |

yi

(7)  

where yi represents the target at position i out of total of n, and ŷi rep
resents the output of the machine learning model also at position i, i.e., 
the SOH estimation value at position i in our task. 

3.4. Preprocessing details 

3.4.1. Interception details determined by experiments 
Specific voltage range of [Vl,Vh] and current ranges of [Il, Ih] which 

were illustrated in Fig. 2 need to be selected for an efficient battery aging 
representation, and “laying down” step needs to resample data points in 
specific length. Thus, the ability of different ranges and resample length 
to represent SOH needs to be discussed when preprocessing. Some data 
analysis methods may be useful for data shape determination, but they 
may require some domain mathematical analysis knowledge. Here we 
use intuitive experiments without the need of such domain knowledge to 
find out which part of the data contain the most information. 

We make a compare on aging segments with different voltage and 
current ranges to find out the ranges which can best represent battery 
aging. We split the voltage into five different segments with 0.3V in
terval and current into four segments with 1000 mA: ①voltage: [3.7V,

4.0V], [3.75V, 4.05V], [3.8V, 4.1V], [3.85V, 4.15V] and [3.9V,4.198V] ; 
② current with the same interval of 1000 mA: [250mA, 1250mA], 
[500mA,1500mA], [750mA, 1750mA] and [1000mA,1980mA]; ③ current 
with the same end of 250 mA: [250mA, 1250mA], [250mA, 1450mA], 
[250mA,1650mA], [250mA, 1850mA] and [250mA,1980mA] (the full CV 
charging current). For these nine groups of data, we process them using 
the same way as what we have described in Section 2.1 step 2, we use the 
cubic spline interpolation to fit them, and resample data with length of 
200. These nine groups of data are then fed into a 3-layer fully connected 
network model to estimate the SOH value. We create an independent 
network model for each group, and the hyperparameters of which are 
consistent and they are listed in Table 4. The RMSE results of these 
different data are shown in Fig. 5. Each network model was trained and 
tested 100 times, and the test RMSEs are averaged. 

Note that in Table 4, the input neuron number of the network model 
is the same as the data length. We use data length of 200 when we are 
choosing the best voltage or current segments thus the input neuron 
number is 200, but when we choose the best fit length of the data, the 
length will be different, as well as the input neuron number. 

In Fig. 5(a), when start voltage rises from 3.7V to 3.75V the error of 
SOH estimation is in an increasing trend, but when it continues to rise, 

Fig. 4. The capacity curve of the six cells in the battery dataset.  

Table 2 
Structure of the encoder of our CAE model.  

Encoder 

Input Two-channel input raw current and voltage data 

Layer1 1D Conv5-8-1 
Layer2 1D Conv5-32-1 
Layer3 1D Conv3-64-3 
Layer4 1D Conv5-64-1 
Layer5 1D Conv5-20-5 
Layer6 FC5 

Output Latent abstract health features  

Table 3 
Structure of the attention-network model for SOH estimation.  

Layer Hyperparameters 

Input Abstract latent features extracted by CAE 

query conv 1D Conv1-4 
key conv 1D Conv1-4 
value conv 1D Conv1-20 
CNN layer 1-3 1D Conv3-20 with padding size of 1 
CNN layer 4 1D Conv3-1 with padding size of 1 

Output FC1 with customized sigmoid  

Table 4 
The hyperparameters of the 3-layer network model.  

Fully connected network 

Input Segments with different range or fit length 

Hidden layer1 FC20 
Hidden layer2 FC20 
Hidden Layer3 FC1 

Output SOH estimation value  
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the errors are generally decreasing, when we have voltage range of 
[3.9V,4.198V], the error of almost every battery reaches the minimum, 
as well as the average error. So, based on the results shown in Fig. 5(a), 
the voltage range of [3.9V,4.198V] is selected. And in Fig. 5(b), the 
estimation errors of each cell is rising in general with the increment of 
start current when the interval of current is fixed to 1000 mA, and we 
have the maximum average error for all cells when the current range is 
[1000mA,1980mA], while the average error meets the minimum value 
when the current range is [250mA,1250mA]. As shown in Fig. 5(c), the 
current ranges with the same end charging current of 250 mA but 
different interval current, we can see that the estimation of the full CV 
stage current of [250mA,1980mA] is extremely high, and the errors are 
improved when decreasing the start current from 1980 mA to 1850 mA, 
and when it further decrease to 1250 mA, the improvement of the errors 
were very limited. It is speculated that the data points from some cycles 
may be not fitted properly near the very start current of 1980 mA 
because of the bad sampling conditions of the original collected data. 
Combining Fig. 5 (b) and (c), and with the further consideration of the 
difficulty of data interception and spline fitting, the current range of 
[250mA,1250mA] is selected. 

After we fit the data with spline curve, we need to resample from the 
fitted curve. We choose six resample data length to find out which offers 
the best SOH estimation performance: ①10; ②20; ③50; ④100; ⑤200; 
⑥500. The network model in this test has the same structure as the one 
in the previous test, and the training process is the same as well. In this 
test, we concatenate whole part of data, i.e., voltage [3.7V, 4.198V] and 
current [250mA,1980mA], to feed the network. The test RMSE results are 
shown in Fig. 5(d). 

In Fig. 5(d) we can see that it’s not the longer the length or the larger 
the volume, the better performance or efficiency the data can provide in 
our SOH estimation task. There is a decreasing trend when resample 
data length is increasing when 10 < length < 200, in general, among 
each battery, except battery 05. But when the length continues to in
crease to 500, the estimation error of battery 05, 11, 18 and 22 increases 
either, as well as the average error. Therefore, we use length of 200 
when we resample the data. 

According to Fig. 5, this experiment of determining the data ranges 
and sampling points may have some guiding instructions suggested by 
the results. Fig. 5(a) (b) indicates that during the CC-CV charging, the 
ranges near the cut-off voltage or currents may show better correlation 
with battery aging. In our case, the voltage range of [3.9V, 4.198V], 
which is the nearest to the cut-off voltage of 4.2V of the CC charging 
stage in those ranges and the current range of [250mA,1250mA], which 
is also the closest to the cut-off current of 40 mA of the CV charging stage 
show the greatest correlation with battery SOH. Besides the above dis
cussed conclusions, from the perspective of the trend of error shown in 
Fig. 5(a) (b), some useful information can be further revealed. For 
example, overall, the error is getting increasingly larger when the ranges 
are getting farther from the cut-off voltage and cut-off current. However, 
unlike the current data which reach the poorest average performance in 
the farthest range of [1000mA, 1980mA], the voltage data reach the 
poorest performance in the range of [3.75V,4.05V] rather than the 
farthest range of [3.7V, 4.0V], showing that there is still some useful 
information contained in this range. These pieces of information indi
cate that for battery CCCV charging data, the most informative data for 
CC charging voltage may be at the beginning and bottom, while the most 
informative CV charging current data may be at the bottom only. Fig. 5 
(d) indicates that a proper data resample length is critical for estimation 
performance, a small number may not contain enough information for 
accurate SOH estimation while a large number may contain redundant 
parts and aggravate the computational burden. 

Overall, Table 5 shows the voltage and current interception ranges, 
and the resample length on the curve after our experimental 
determination. 

Fig. 5. Estimation RMSE for data selection. Using data of (a) different voltage ranges; (b) current ranges with the same 1000 mA interval length; (c) current ranges 
with the same end current of 250 mA; (d) resample length. 

Table 5 
The interception and alignment details.  

Voltage segment range Current segment range Resample length 

[3.9V,4.198V] [250mA,1250mA] 200  
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3.4.2. Data interception and alignment 
Concretely, Fig. 6 (a) and (b) show the CCCV charging stage voltage 

and current curve at the charging stage of one battery cycle, and the 
interception schematic of aging segments. The green part on the line 
respect CC stage, and orange part CV stage. In both figures, the part 
enclosed by the grey boxes are the aging segments we intercepted, 
Vcut− off and Icut− off are cut off voltage and current, the lower bound of the 
voltage and current is indicated by subscript l and the upper bound by h, 
the VCC− start is the beginning charging voltage, and Icharge is the constant 
current at CC stage. Fig. 6 (c) and (d) represent the voltage and current 
data from different cycles of Cell 1, early cycles are colored by red in (c) 
and blue in (d) while the late cycles are yellow in (c) and green in (d). We 
can see the trend that the later the cycle is, the quicker the charging 
stage will complete. Fig. 6 (e) represents the fitted spline curve of Cell 1, 

we can see that the curves of early cycles are at an upper position, which 
means they take more time for CC and CV charging stage during the 
same voltage or current range. 

4. SOH estimation results and discussions 

4.1. Estimation based on different components 

We further conduct ablation studies to investigate the effectiveness 
of different components of our model. Thus, we create three models: ① 
CAE-CNN, by removing the SA module and use regular CNN to replace it; 
②SA, by removing the CAE and directly input the raw data into a CNN 
with SA module, ③CNN only, by removing both parts and use only a 
regular CNN to complete the job, the estimation RMSE and MAPE results 

Fig. 6. The intercepted voltage and current. (a) Voltage during charging, (b) Current during charging, (c) charging voltage of all cycle data from Cell 1, (d) charging 
current segments of Cell 1, (e) intercepted and fitted curves for aging segments. 
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are presented in Table 6. 
In Table 6 we can see that both parts improve the performance in 

similar extent. With the quantitative measurement using RMSE, when 
combining two modules, 27.9% of improvement are brought, sepa
rately, SA module brings 12.4%, and CAE model 17.8%. Thus, the CAE 
can automatically extract abstract health features which can help 
improve the model accuracy, while SA module can find out the rela
tionship among the input features. 

The effect of each components may provide some hints for the results 
shown in Table 6. In our complete model, the preprocessed data is input 
into the CAE to extract features automatically, and the extracted features 
are then input into the SA module for further processing. Finally, the 
subsequent CNN is used for final SOH estimation. Without CAE, the 
features cannot be extracted, which causes incomplete information 
mining of the raw data. Without SA, the features extracted by CAE are 
directly input into a CNN, causes an incomplete model learning of the 
abstract feature patterns. Combining the both components we can 
explain the poorest result of the forth column of “CNN” only. 

4.2. Comparisons with other approaches 

4.2.1. Model structures 
In this section, we compare our proposed model with several 

methods which have been utilized for data-driven SOH estimation tasks 
in the existing some researches. These models are: ELM [41], DCNN 
[42], ITDNN [43] and LSTM [44]. They are all data-driven methods 
without feature engineering, and good at processing raw battery 
sequential data. Note that the input data and training algorithm for these 
models are the same as our CAE-SA model. The inputs are the pre
processed raw data which are in shape of Eq. (1), and we also train these 
models through back propagation algorithm to fit the nonlinearity be
tween input data and battery SOH. The introductions of each models are 
as follows, whose key hyperparameters are listed in Table 7: 

ELM [41]: extreme learning machine, an ELM can simply has one 
hidden layer. Since first proposed by Huang et al. [45], the ELM has 
attracted extensive attention for its efficient learning ability. 

DCNN [42]: deep convolutional neural network. A deep neural 
network with convolutional layers can be called as DCNN. With the help 
of convolutional layers, DCNN is good at processing grid-like data. 

ITDNN [43]: input time delay neural network, it has interesting 
properties such as the ability to learn and handle dynamic information 
compared to just a regular feedforward neural network. The key 
hyperparameter in Table 7 means there are 4 time-delay layers with 20 
feature channels each. 

LSTM [44]: long short-term memory, it is a kind of recurrent neural 
network algorithm. LSTM is known for its strong ability for processing 
sequence like data such as time series. The key parameters in Table 7 
means there are 4 recurrent layers with 20 hidden feature channels each, 

and 1 output channel. Results. 
Fig. 7 shows the estimation results by our proposed CAE-SA model on 

cell 2 in our dataset and B0006 in NASA dataset. In addition, we show 
the specific test RMSE and MAPE of every method on each cell of our 
dataset in Table 8. Note that we run CAE-SA model 10 times and Fig. 7 
shows the best results, while Table 8 shows the average error values. 

For the results on cells in our dataset which are listed in Table 8, 
averagely, our CAE-SA model outperforms ELM by 26.2%, DCNN 22.6%, 
ITDNN 52.1% and LSTM 9.7% in terms of RMSE. ITDNN, which has a 
similar aim of processing grid-like data as CNN, may be not as flexible as 
CNN in practical applications. ELM and DCNN have close average error 
values, but ELM has simpler structure. LSTM reaches very good results 
which are very closed to our CAE-SA model, but LSTM also has a 
shortcut of high computational complexity and time cost. Despite good 
average error, our model has the poorest performance on the second 
dataset, and is also beaten by ELM and DCNN on the fifth dataset, it is 
partly because the complex structure of our model leads to overfitting. 

4.2.2. Computational complexity 
We demonstrate the computational complexity of above methods by 

presenting the average training time and testing time in Table 9, with 
the same hardware. 

The training time is averaged on each cell and every training epoch, 
and testing time on each cell. The training time in Table 9 of the first four 
models are acceptable, ELM has the shortest training time of 304 ms/ 
cell/epoch because of a simple structure, and DCNN can be trained faster 
than the ITDNN. Although our proposed CAE-SA model has relatively 
slower training speed and higher computational complexity, we have 
high accuracy which can match it. However, LSTM has a poorer per
formance but is either 3.19 times slower than our CAE-SA. 

Combining the results in Tables 8 and 9, we conclude that the pro
posed CAE-SA model has an effective and accurate estimation perfor
mance using the raw battery voltage and current data without extracting 
features manually. 

4.3. Comparisons with manual features 

To obtain comprehensive results, experiments are further conducted 
to compare the performance of automatic features and manual features. 
The automatic features are extracted by the proposed CAE from the 
“cutting-laying down” preprocessing and subsequently processed by SA 
module, while manual features are extracted based on domain knowl
edge, there are four typical while well-performing manual features 
which were extracted and utilized in many existing methods, they are 
listed in Table 10 as well as the literatures which utilized them. 

We are about to provide comparisons from the aspects of both the 
feature patterns and SOH estimation performance. 

4.3.1. Feature extraction 
To provide more intuitive illustrations of the patterns of automatic 

features extracted by CAE, t-distribution stochastic neighbor embedding 
(t-SNE) is utilized. The t-SNE is a method to embed high dimensional 
data into low-dimensional ones, making it a convenient and commonly 
used algorithm for the visualization of the characteristics and patterns of 

Table 6 
The estimation results of the ablation experiment.   

CAE-SA CAE-CNN SA CNN only 

RMSE Cell1 0.0090282 0.0105103 0.0102092 0.0111948 
Cell2 0.0079496 0.0082811 0.0081983 0.0107282 
Cell3 0.0022541 0.0028112 0.0049093 0.0046078 
Cell4 0.0021067 0.0033649 0.0034339 0.0041919 
Cell5 0.0040943 0.0035906 0.003947 0.0044494 
Cell6 0.0035543 0.0045151 0.0045489 0.005049 

Average 0.0048312 0.0055122 0.0058744 0.0067035 

MAPE Cell1 0.0091837 0.0107115 0.0101696 0.0111542 
Cell2 0.0078737 0.0083617 0.0081345 0.010947 
Cell3 0.0018857 0.0023882 0.0046034 0.0043085 
Cell4 0.0017217 0.0032307 0.0031825 0.0038252 
Cell5 0.0039053 0.0033849 0.0036266 0.0040377 
Cell6 0.0033806 0.0044904 0.0043664 0.0048573 

Average 0.0046584 0.0054279 0.0056805 0.0065216  

Table 7 
Key hyperparameters of the compared models.   

ELM DCNN ITDNN LSTM 

Input Data after preprocessing 

Layers FC 400 3 * 1D Conv3-16 4*Time-delay-20 LSTM 4-20-1 
1D Conv3-1 

FC 1000 Average Pooling FC 100 
FC 20 
FC 10 FC 10 

Output SOH value  
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high-dimensional data. The extracted features by CAE are in shape of 
(n cycles, 20, 5), t-SNE can embed them into lower dimensional space, 
then we can visualize them on a 2D plate. Furthermore, we extracted 4 
manual features, which were typical but well performing features. They 
are listed in Table 10, as well as the works which utilized them. A t-SNE 
dimension reduction is also applied to them for visualization. 

The visualization results of cell 2 in our dataset and B0006 in the 
NASA dataset are depicted in Fig. 8. The meaning of the color of the 
points in Fig. 8 is the cycle number, the 2 figures in the first raw, which 
are Fig. 8 (a) (b), shows the automatically extracted features of the 2 
cells by CAE after t-SNE embedding on 2D plate, while Fig. 8 (c) (d) 
illustrate the manually extracted features of both cells. 

The embedded features of NASA dataset in Fig. 8 (b) (d) seem to be 
more regular than that of our dataset in Fig. 8 (a) (c), but we can observe 
obvious patterns with among each feature with the cycle number in both 

automatic and manual features of both cells. Considering the clarity of 
the embedded features on the 2D plate, the manual features of cell2 in 
Fig. 8 (c) have some overlapping areas over some feature points. And by 
comparing Fig. 8 (b) and (d), it is found that although the feature points 
in each figure are arranged in an oblique line with respect to the cycle 
numbers, some points in Fig. 8(d) are scattered outside the line area, 
while the points in Fig. 8(b) are arranged more neatly. By these pieces of 
information shown on the embedding 2D plate, we can conclude that the 
CAE model we utilize can extract equally or even more efficient features 
for both our dataset and the public NASA dataset. 

4.3.2. SOH estimation results 
We further make conduct experiments comparing the automatic 

features extracted by our CAE model and the 4 manually extracted 
features listed in Table 10 on their performance of SOH estimation. After 
features are obtained, the automatic features are subsequently processed 
by SA module as our proposed approach, while there is an ensemble of 
four regression models for the processing of the manual features, they 
are support vector regression model (SVR), Gaussian process regression 
model (GPR), multi-layer perceptron (MLP), and a CNN model. The 
average estimation MAPE results are shown in Table 11. 

Note that for manual features for our dataset, the estimation model of 
SVR gets poor results of almost 50% of MAPE for each cell, therefore, it is 
excluded from the model ensemble. By comparing the proposed CAE-SA 
model with each model for manual features, the proposed model still has 
some slight performance gap by average, but not much. Moreover, the 
extraction of manual features requires much domain knowledge of LIB 
degradation behaviors, and by the errors shown in Table 11, we can see 
that for the same manual features, the selection of the regression model 
is also crucial for the final estimation accuracy, since the errors reached 
by the three or four models for our dataset or NASA dataset vary a lot in a 
large range. However, our proposed CAE-SA method has no such 
worries, for it is a straightforward approach to estimate by extracting 
features automatically by CAE without domain knowledge and 

Fig. 7. The SOH estimation results of cell 2 in our dataset and B0006 in NASA dataset by our proposed CAE-SA model.  

Table 8 
SOH estimation errors of each method.   

CAE-SA ELM DCNN ITDNN LSTM 

RMSE Cell1 0.008741 0.011893 0.010676 0.018546 0.009841 
Cell2 0.007950 0.006249 0.010995 0.005787 0.007072 
Cell3 0.002254 0.007754 0.004111 0.008782 0.003415 
Cell4 0.002107 0.002479 0.002718 0.006136 0.003538 
Cell5 0.004094 0.003027 0.003232 0.013972 0.004119 
Cell6 0.003554 0.007875 0.005721 0.007298 0.004130 

Average 0.004831 0.006546 0.006242 0.010087 0.005352 

MAPE Cell1 0.009184 0.011859 0.010783 0.018087 0.009754 
Cell2 0.007874 0.005806 0.010994 0.004214 0.006557 
Cell3 0.001886 0.007546 0.003597 0.007738 0.002955 
Cell4 0.001722 0.002104 0.002345 0.005413 0.003105 
Cell5 0.003905 0.002622 0.002907 0.013996 0.003707 
Cell6 0.003381 0.007672 0.005505 0.007056 0.003805 

Average 0.004658 0.006268 0.006022 0.009418 0.004980  

Table 9 
The average training and testing time of each methods.   

CAE-SA ELM DCNN ITDNN LSTM 

Avg training time (ms) 2715 304 759 1255 8660 
Avg testing time (ms) 106 78 88 209 136  

Table 10 
Manually extracted features.  

Feature name Description 

IC peak intensity 
[47,48] 

The 
dQ
dV 

value of incremental capacity (IC) curve peak. 

V at IC peak [47,49] The voltage value at the peak of IC curve. 
Time stamp [50] The time of a specific voltage value (4.1V in our case) in CC 

charging stage. 
ΔU under fixed t 

[51] 
Voltage change in a fixed time interval of CC charging stage.  

Y. Jiang et al.                                                                                                                                                                                                                                    



Journal of Power Sources 556 (2023) 232466

12

subsequently processing the abstract features by SA module. 

5. Conclusions 

In this paper, a data-driven approach was proposed for SOH esti
mation of lithium-ion batteries. In detail, a convolutional autoencoder 
was proposed to automatically extract features from battery raw data, 
which significantly save time and labor from conventional manual 
feature engineering process. Then, a self-attention mechanism was used 
to further process the extracted high-dimensional features and perform 
SOH estimation. Specifically, during data preprocessing, a “cutting- 
laying down” method was used to intercept and align the raw data. By 
intercepting the raw charging current and voltage data collected from 
different cycles into specific range, and re-mapping the data using time 
as independent variable on x axis, the data can be properly preprocessed 
and degradation information can be retained. Besides, the utilized data 
ranges and number of resample points were discussed in details. It was 
found by experiments that the voltage and current ranges which are 

nearest to the cut-off value possess the greatest correlation with battery 
SOH. Extensive experiments were conducted to prove that the proposed 
CAE was able to extract efficient health features, and the SA module was 
able to further properly process the automatic features and provide ac
curate SOH estimation results. The comparing among different parts of 
the model explored the effect of each model part, and the comparing 
among different models explored the efficiency and computational 
complexity of our model and other existing data-driven models. More
over, the comparing between the automatic features extracted by the 
proposed CAE model with four typical manual features was also con
ducted on our dataset and the public NASA dataset. The visualization 
results of these features after t-SNE embedding on 2D plate have proved 
that the automatic features have equally efficient representation with 
manual features for the battery SOH. Furthermore, the SOH estimation 
results were compared between the automatic features and manual 
features, it was found that the proposed method was able to reach ac
curate SOH estimation results on both our dataset and the public NASA 
dataset. Compared to the manual features which could get slightly better 
results with an ensemble of regression models, the proposed automatic 
feature extraction method enjoyed the significant merits of reaching 
accurate SOH estimation results without the need of domain knowledge 
for conventional feature extraction process. Quantitatively, our model 
could provide SOH estimation results with an average RMSE of 0.0048 
and MAPE 0.46% on test cells of our dataset, and 3.69% MAPE on the 
public NASA dataset. In the future work, further research of the SOH 
estimation with partially charged or discharged battery data will be a 
featured work. This work may provide solution to the real-world 
application problems of LIBs which are often under partially charging 
or discharging situations. 

Fig. 8. The embedded features using t-SNE of cell2 in our dataset and B0006 in NASA dataset. (a), (b) Automatic features of by CAE; (c), (d) manual features 
in Table 10. 

Table 11 
The SOH estimation average MAPE results in both our and NASA dataset.  

Dataset Our 6 cells NASA 4 cells  

Estimation 
model 

Respective Average Respective Average 

Automatic CAE-SA 0.004658 0.004658 0.036853 0.036853 

Manual 
SVR \ \ 0.056861 0.037686 
GPR 0.003370  0.029806 
MLP 0.004413 0.032008 
CNN 0.004752 0.032070 

** The "\" symbols in the SVR row mean that the SOH estimation errors are too 
large to be included. 
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